ObjectARX, AutoCAD. Среда программирования библиотеки C++

         

Пересечение с Другими примитивами


IntersectWith () функция имеет две формы:

virtual Acad::ErrorStatus

intersectWith(

const AcDbEntity* ent,

AcDb::Intersect intType,

AcGePoint3dArray& points,

int thisGsMarker = 0,

int otherGsMarker = 0) const;

virtual Acad::ErrorStatus

intersectWith(

const AcDbEntity* ent,

AcDb::Intersect intType,

const AcGePlane& projPlane,

AcGePoint3dArray& points,

int thisGsMarker = 0,

int otherGsMarker = 0) const;



Первая форма intersectWith () функциональные испытания на простое пересечение двух объектов. Вторая форма вычисляет пересечение на проекционную плоскость. Однако, обе функции возвращают перекрестные пункты{*точки*} на объекте непосредственно.

Использовать проекционную плоскую форму intersectWith () функция

1 Проектируют ваш объект и объект параметра на плоскость.

2 Проверяют объекты на пересечение на проекционной плоскости.

3 Проектируют перекрестные пункты{*точки*} назад на объект и возвращают их.

Заказной AsdkPoly класс перегружает обеих формы intersectWith () функция.

Acad::ErrorStatus

AsdkPoly::intersectWith(

const AcDbEntity* ent,

AcDb::Intersect intType,

AcGePoint3dArray& points,

int /*thisGsMarker*/,

int /*otherGsMarker*/) const

{

assertReadEnabled();

Acad::ErrorStatus es = Acad::eOk;

if (ent == NULL)

return Acad::eNullEntityPointer;

// The idea is to intersect each side of the polygon

// with the given entity and return all the points.

//

// For non-R12-entities with intersection methods defined,

// we call that method for each of the sides of the polygon.

// For R12-entities, we use the locally defined intersectors,

// since their protocols are not implemented.

//

if (ent->isKindOf(AcDbLine::desc())) {

if ((es = intLine(this, AcDbLine::cast(ent),

intType, NULL, points)) != Acad::eOk)

{

return es;

}

} else if (ent->isKindOf(AcDbArc::desc())) {

if ((es = intArc(this, AcDbArc::cast(ent), intType,

NULL, points)) != Acad::eOk)

{

return es;

}

} else if (ent->isKindOf(AcDbCircle::desc())) {


if ((es = intCircle(this, AcDbCircle::cast(ent),

intType, NULL, points)) != Acad::eOk)

{

return es;

}

} else if (ent->isKindOf(AcDb2dPolyline::desc())) {

if ((es = intPline(this, AcDb2dPolyline::cast(ent),

intType, NULL, points)) != Acad::eOk)

{

return es;

}

} else if (ent->isKindOf(AcDb3dPolyline::desc())) {

if ((es = intPline(this, AcDb3dPolyline::cast(ent),

intType, NULL, points)) != Acad::eOk)

{

return es;

}

} else {

AcGePoint3dArray vertexArray;

if ((es = getVertices3d(vertexArray))

!= Acad::eOk)

{

return es;

}

if (intType == AcDb::kExtendArg

|| intType == AcDb::kExtendBoth)

{

intType = AcDb::kExtendThis;

}

AcDbLine *pAcadLine;

for (int i = 0; i < vertexArray.length() - 1; i++) {

pAcadLine = new AcDbLine();

pAcadLine->setStartPoint(vertexArray[i]);

pAcadLine->setEndPoint(vertexArray[i + 1]);

pAcadLine->setNormal(normal());

if ((es = ent->intersectWith(pAcadLine, intType,

points)) != Acad::eOk)

{                             

delete pAcadLine;

return es;

}

delete pAcadLine;

}

}

return es;

}

Acad::ErrorStatus

AsdkPoly::intersectWith(

const AcDbEntity* ent,

AcDb::Intersect intType,

const AcGePlane& projPlane,

AcGePoint3dArray& points,

int /*thisGsMarker*/,

int /*otherGsMarker*/) const

{

assertReadEnabled();

Acad::ErrorStatus es = Acad::eOk;

if (ent == NULL)

return Acad::eNullEntityPointer;

// The idea is to intersect each side of the polygon

// with the given entity and return all the points.

//

// For non-R12-entities, with intersection methods defined,

// we call that method for each of the sides of the polygon.

// For R12-entities, we use the locally defined intersectors,

// since their protocols are not implemented.

//

if (ent->isKindOf(AcDbLine::desc())) {

if ((es = intLine(this, AcDbLine::cast(ent),

intType, &projPlane, points)) != Acad::eOk)

{

return es;

}

} else if (ent->isKindOf(AcDbArc::desc())) {

if ((es = intArc(this, AcDbArc::cast(ent), intType,



&projPlane, points)) != Acad::eOk)

{

return es;

}

} else if (ent->isKindOf(AcDbCircle::desc())) {

if ((es = intCircle(this, AcDbCircle::cast(ent),

intType, &projPlane, points)) != Acad::eOk)

{

return es;

}

} else if (ent->isKindOf(AcDb2dPolyline::desc())) {

if ((es = intPline(this, AcDb2dPolyline::cast(ent),

intType, &projPlane, points)) != Acad::eOk)

{

return es;

}

} else if (ent->isKindOf(AcDb3dPolyline::desc())) {

if ((es = intPline(this, AcDb3dPolyline::cast(ent),

intType, &projPlane, points)) != Acad::eOk)

{

return es;

}

} else {

AcGePoint3dArray vertexArray;

if ((es = getVertices3d(vertexArray))

!= Acad::eOk)

{

return es;

}

if (intType == AcDb::kExtendArg

|| intType == AcDb::kExtendBoth)

{

intType = AcDb::kExtendThis;

}

AcDbLine *pAcadLine;

for (int i = 0; i < vertexArray.length() - 1; i++) {

pAcadLine = new AcDbLine();

pAcadLine->setStartPoint(vertexArray[i]);

pAcadLine->setEndPoint(vertexArray[i + 1]);

pAcadLine->setNormal(normal());

if ((es = ent->intersectWith(pAcadLine, intType,

projPlane, points)) != Acad::eOk)

{

delete pAcadLine;

return es;

}

delete pAcadLine;

}

// All the points that we selected in this process are on

// the other curve; we are dealing with apparent

// intersection. If the other curve is 3D or is not

// on the same plane as poly, the points are not on

// poly.

//

// In this case, we need to do some more work. Project the

// points back onto the plane. They should lie on

// the projected poly. Find points on real poly

// corresponding to the projected points.

//

AcGePoint3d projPt, planePt;

AcGePoint3dArray pts;

AcGeLine3d line;

AcGePlane polyPlane;

AcDb::Planarity plnrty;

getPlane(polyPlane,plnrty);

for (i = 0; i < points.length(); i++) {

// Define a line starting from the projPt and

// along the normal. Intersect the polygon with

// that line. Find all the points and pick the

// one closest to the given point.

//

projPt = points[i].orthoProject(projPlane);

line.set(projPt, projPlane.normal());

if ((es = intLine(this, line, pts))

!= Acad::eOk)

{

return es;

}

planePt = projPt.project(polyPlane,

projPlane.normal());

points[i] = pts[0];

double length = (planePt - pts[0]).length();

double length2;

for (int j = 1; j < pts.length(); j++) {

if ((length2 = (planePt - pts[j]).length())

< length)

{

points[i] = pts[j];

length = length2;

}

}

}

}

return es;

}


Содержание раздела